Sequence-to-Sequence Generation for Spoken Dialogue via Deep Syntax Trees and Strings

17 Jun 2016  ·  Ondřej Dušek, Filip Jurčíček ·

We present a natural language generator based on the sequence-to-sequence approach that can be trained to produce natural language strings as well as deep syntax dependency trees from input dialogue acts, and we use it to directly compare two-step generation with separate sentence planning and surface realization stages to a joint, one-step approach. We were able to train both setups successfully using very little training data. The joint setup offers better performance, surpassing state-of-the-art with regards to n-gram-based scores while providing more relevant outputs.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here