Sequential Low-Rank Change Detection

3 Oct 2016  ·  Yao Xie, Lee Seversky ·

Detecting emergence of a low-rank signal from high-dimensional data is an important problem arising from many applications such as camera surveillance and swarm monitoring using sensors. We consider a procedure based on the largest eigenvalue of the sample covariance matrix over a sliding window to detect the change. To achieve dimensionality reduction, we present a sketching-based approach for rank change detection using the low-dimensional linear sketches of the original high-dimensional observations. The premise is that when the sketching matrix is a random Gaussian matrix, and the dimension of the sketching vector is sufficiently large, the rank of sample covariance matrix for these sketches equals the rank of the original sample covariance matrix with high probability. Hence, we may be able to detect the low-rank change using sample covariance matrices of the sketches without having to recover the original covariance matrix. We character the performance of the largest eigenvalue statistic in terms of the false-alarm-rate and the expected detection delay, and present an efficient online implementation via subspace tracking.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here