SESV: Accurate Medical Image Segmentation byPredicting and Correcting Errors

21 Sep 2020  ·  Yutong Xie; Jianpeng Zhang; Hao Lu; Chunhua Shen; Yong Xia ·

Medical image segmentation is an essential task in computer-aided diagnosis. Despite their prevalence and success, deep convolutional neural networks (DCNNs) still need to be improved to produce accurate and robust enough segmentation results for clinical use. In this paper, we propose a novel and generic framework called Segmentation-Emendation-reSegmentation-Verification (SESV) to improve the accuracy of existing DCNNs in medical image segmentation, instead of designing a more accurate segmentation model. Our idea is to predict the segmentation errors produced by an existing model and then correct them. Since predicting segmentation errors is challenging, we design two ways to tolerate the mistakes in the error prediction. First, rather than using a predicted segmentation error map to correct the segmentation mask directly, we only treat the error map as the prior that indicates the locations where segmentation errors are prone to occur, and then concatenate the error map with the image and segmentation mask as the input of a re-segmentation network. Second, we introduce a verification network to determine whether to accept or reject the refined mask produced by the re-segmentation network on a region-by-region basis. The experimental results on the CRAG, ISIC, and IDRiD datasets suggest that using our SESV framework can improve the accuracy of DeepLabv3+ substantially and achieve advanced performance in the segmentation of gland cells, skin lesions, and retinal microaneurysms. Consistent conclusions can also be drawn when using PSPNet, U-Net, and FPN as the segmentation network, respectively. Therefore, our SESV framework is capable of improving the accuracy of different DCNNs on different medical image segmentation tasks.

PDF

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods