Set-Valued Risk Measures as Backward Stochastic Difference Inclusions and Equations

14 Dec 2019  ·  Çağın Ararat, Zachary Feinstein ·

Scalar dynamic risk measures for univariate positions in continuous time are commonly represented as backward stochastic differential equations. In the multivariate setting, dynamic risk measures have been defined and studied as families of set-valued functionals in the recent literature. There are two possible extensions of scalar backward stochastic differential equations for the set-valued framework: (1) backward stochastic differential inclusions, which evaluate the risk dynamics on the selectors of acceptable capital allocations; or (2) set-valued backward stochastic differential equations, which evaluate the risk dynamics on the full set of acceptable capital allocations as a singular object. In this work, the discrete time setting is investigated with difference inclusions and difference equations in order to provide insights for such differential representations for set-valued dynamic risk measures in continuous time.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here