Sex-Prediction from Periocular Images across Multiple Sensors and Spectra

1 May 2019Juan TapiaChristian RathgebChristoph Busch

In this paper, we provide a comprehensive analysis of periocular-based sex-prediction (commonly referred to as gender classification) using state-of-the-art machine learning techniques. In order to reflect a more challenging scenario where periocular images are likely to be obtained from an unknown source, i.e. sensor, convolutional neural networks are trained on fused sets composed of several near-infrared (NIR) and visible wavelength (VW) image databases... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet