Sex-Prediction from Periocular Images across Multiple Sensors and Spectra

1 May 2019  ·  Juan Tapia, Christian Rathgeb, Christoph Busch ·

In this paper, we provide a comprehensive analysis of periocular-based sex-prediction (commonly referred to as gender classification) using state-of-the-art machine learning techniques. In order to reflect a more challenging scenario where periocular images are likely to be obtained from an unknown source, i.e. sensor, convolutional neural networks are trained on fused sets composed of several near-infrared (NIR) and visible wavelength (VW) image databases. In a cross-sensor scenario within each spectrum an average classification accuracy of approximately 85\% is achieved. When sex-prediction is performed across spectra an average classification accuracy of about 82\% is obtained. Finally, a multi-spectral sex-prediction yields a classification accuracy of 83\% on average. Compared to proposed works, obtained results provide a more realistic estimation of the feasibility to predict a subject's sex from the periocular region.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here