Sharing resources between free/open-source rule-based machine translation systems: Grammatical Framework and Apertium

LREC 2014 Gr{\'e}goire D{\'e}trezV{\'\i}ctor M. S{\'a}nchez-CartagenaAarne Ranta

In this paper, we describe two methods developed for sharing linguistic data between two free and open source rule based machine translation systems: Apertium, a shallow-transfer system; and Grammatical Framework (GF), which performs a deeper syntactic transfer. In the first method, we describe the conversion of lexical data from Apertium to GF, while in the second one we automatically extract Apertium shallow-transfer rules from a GF bilingual grammar... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet