Short-wavelength Reverberant Wave Systems for Physical Realization of Reservoir Computing

13 Apr 2022  ·  Shukai Ma, Thomas M. Antonsen, Steven M. Anlage, Edward Ott ·

Machine learning (ML) has found widespread application over a broad range of important tasks. To enhance ML performance, researchers have investigated computational architectures whose physical implementations promise compactness, high-speed execution, physical robustness, and low energy cost. Here, we experimentally demonstrate an approach that uses the high sensitivity of reverberant short wavelength waves for physical realization and enhancement of computational power of a type of ML known as reservoir computing (RC). The potential computation power of RC systems increases with their effective size. We here exploit the intrinsic property of short wavelength reverberant wave sensitivity to perturbations to expand the effective size of the RC system by means of spatial and spectral perturbations. Working in the microwave regime, this scheme is tested experimentally on different ML tasks. Our results indicate the general applicability of reverberant wave-based implementations of RC and of our effective reservoir size expansion technique

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here