SIBILA: High-performance computing and interpretable machine learning join efforts toward personalised medicine in a novel decision-making tool

12 May 2022  ·  Antonio Jesús Banegas-Luna, Horacio Pérez-Sánchez ·

Background and Objectives: Personalised medicine remains a major challenge for scientists. The rapid growth of Machine learning and Deep learning has made it a feasible alternative for predicting the most appropriate therapy for individual patients. However, the lack of interpretation of their results and high computational requirements make many reluctant to use these methods. Methods: Several Machine learning and Deep learning models have been implemented into a single software tool, SIBILA. Once the models are trained, SIBILA applies a range of interpretability methods to identify the input features that each model considered the most important to predict. In addition, all the features obtained are put in common to estimate the global attribution of each variable to the predictions. To facilitate its use by non-experts, SIBILA is also available to all users free of charge as a web server at https://bio-hpc.ucam.edu/sibila/. Results: SIBILA has been applied to three case studies to show its accuracy and efficiency in classification and regression problems. The first two cases proved that SIBILA can make accurate predictions even on uncleaned datasets. The last case demonstrates that SIBILA can be applied to medical contexts with real data. Conclusion: With the aim of becoming a powerful decision-making tool for clinicians, SIBILA has been developed. SIBILA is a novel software tool that leverages interpretable machine learning to make accurate predictions and explain how models made those decisions. SIBILA can be run on high-performance computing platforms, drastically reducing computing times.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here