Side Information in Robust Principal Component Analysis: Algorithms and Applications

Robust Principal Component Analysis (RPCA) aims at recovering a low-rank subspace from grossly corrupted high-dimensional (often visual) data and is a cornerstone in many machine learning and computer vision applications. Even though RPCA has been shown to be very successful in solving many rank minimisation problems, there are still cases where degenerate or suboptimal solutions are obtained... (read more)

PDF Abstract ICCV 2017 PDF ICCV 2017 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet