Side-Tuning: A Baseline for Network Adaptation via Additive Side Networks

ICLR 2020 Jeffrey O ZhangAlexander SaxAmir ZamirLeonidas GuibasJitendra Malik

When training a neural network for a desired task, one may prefer to adapt a pre-trained network rather than starting from randomly initialized weights. Adaptation can be useful in cases when training data is scarce, when a single learner needs to perform multiple tasks, or when one wishes to encode priors in the network... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet