Shifted Randomized Singular Value Decomposition

26 Nov 2019Ali Basirat

We extend the randomized singular value decomposition (SVD) algorithm \citep{Halko2011finding} to estimate the SVD of a shifted data matrix without explicitly constructing the matrix in the memory. With no loss in the accuracy of the original algorithm, the extended algorithm provides for a more efficient way of matrix factorization... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet