Shifted Randomized Singular Value Decomposition

26 Nov 2019Ali Basirat

We extend the randomized singular value decomposition (SVD) algorithm \citep{Halko2011finding} to estimate the SVD of a shifted data matrix without explicitly constructing the matrix in the memory. With no loss in the accuracy of the original algorithm, the extended algorithm provides for a more efficient way of matrix factorization... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet