Sign Bits Are All You Need for Black-Box Attacks

ICLR 2020  ·  Abdullah Al-Dujaili, Una-May O'Reilly ·

We present a novel black-box adversarial attack algorithm with state-of-the-art model evasion rates for query efficiency under $\ell_\infty$ and $\ell_2$ metrics. It exploits a \textit{sign-based}, rather than magnitude-based, gradient estimation approach that shifts the gradient estimation from continuous to binary black-box optimization. It adaptively constructs queries to estimate the gradient, one query relying upon the previous, rather than re-estimating the gradient each step with random query construction. Its reliance on sign bits yields a smaller memory footprint and it requires neither hyperparameter tuning or dimensionality reduction. Further, its theoretical performance is guaranteed and it can characterize adversarial subspaces better than white-box gradient-aligned subspaces. On two public black-box attack challenges and a model robustly trained against transfer attacks, the algorithm's evasion rates surpass all submitted attacks. For a suite of published models, the algorithm is $3.8\times$ less failure-prone while spending $2.5\times$ fewer queries versus the best combination of state of art algorithms. For example, it evades a standard MNIST model using just $12$ queries on average. Similar performance is observed on a standard IMAGENET model with an average of $579$ queries.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here