Sign Bits Are All You Need for Black-Box Attacks

ICLR 2020 Anonymous

We present a novel black-box adversarial attack algorithm with state-of-the-art model evasion rates for query efficiency under $\ell_\infty$ and $\ell_2$ metrics. It exploits a \textit{sign-based}, rather than magnitude-based, gradient estimation approach that shifts the gradient estimation from continuous to binary black-box optimization... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet