Sign Language Recognition Using Temporal Classification

7 Jan 2017  ·  Hardie Cate, Fahim Dalvi, Zeshan Hussain ·

Devices like the Myo armband available in the market today enable us to collect data about the position of a user's hands and fingers over time. We can use these technologies for sign language translation since each sign is roughly a combination of gestures across time. In this work, we utilize a dataset collected by a group at the University of South Wales, which contains parameters, such as hand position, hand rotation, and finger bend, for 95 unique signs. For each input stream representing a sign, we predict which sign class this stream falls into. We begin by implementing baseline SVM and logistic regression models, which perform reasonably well on high quality data. Lower quality data requires a more sophisticated approach, so we explore different methods in temporal classification, including long short term memory architectures and sequential pattern mining methods.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods