Given a convex and differentiable objective $Q(\M)$ for a real, symmetric matrix $\M$ in the positive definite (PD) cone---used to compute Mahalanobis distances---we propose a fast general metric learning framework that is entirely projection-free. We first assume that $\M$ resides in a space $\cS$ of generalized graph Laplacian matrices (graph metric matrices) corresponding to balanced signed graphs... (read more)

PDF
Submit
results from this paper
to get state-of-the-art GitHub badges and help the
community compare results to other papers.

METHOD | TYPE | |
---|---|---|

🤖 No Methods Found | Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet |