Sim-to-Real Transfer for Biped Locomotion

4 Mar 2019  ·  Wenhao Yu, Visak CV Kumar, Greg Turk, C. Karen Liu ·

We present a new approach for transfer of dynamic robot control policies such as biped locomotion from simulation to real hardware. Key to our approach is to perform system identification of the model parameters {\mu} of the hardware (e.g. friction, center-of-mass) in two distinct stages, before policy learning (pre-sysID) and after policy learning (post-sysID). Pre-sysID begins by collecting trajectories from the physical hardware based on a set of generic motion sequences. Because the trajectories may not be related to the task of interest, presysID does not attempt to accurately identify the true value of {\mu}, but only to approximate the range of {\mu} to guide the policy learning. Next, a Projected Universal Policy (PUP) is created by simultaneously training a network that projects {\mu} to a low-dimensional latent variable {\eta} and a family of policies that are conditioned on {\eta}. The second round of system identification (post-sysID) is then carried out by deploying the PUP on the robot hardware using task-relevant trajectories. We use Bayesian Optimization to determine the values for {\eta} that optimizes the performance of PUP on the real hardware. We have used this approach to create three successful biped locomotion controllers (walk forward, walk backwards, walk sideways) on the Darwin OP2 robot.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here