Similarity R-C3D for Few-shot Temporal Activity Detection

25 Dec 2018  ·  Huijuan Xu, Bingyi Kang, Ximeng Sun, Jiashi Feng, Kate Saenko, Trevor Darrell ·

Many activities of interest are rare events, with only a few labeled examples available. Therefore models for temporal activity detection which are able to learn from a few examples are desirable. In this paper, we present a conceptually simple and general yet novel framework for few-shot temporal activity detection which detects the start and end time of the few-shot input activities in an untrimmed video. Our model is end-to-end trainable and can benefit from more few-shot examples. At test time, each proposal is assigned the label of the few-shot activity class corresponding to the maximum similarity score. Our Similarity R-C3D method outperforms previous work on three large-scale benchmarks for temporal activity detection (THUMOS14, ActivityNet1.2, and ActivityNet1.3 datasets) in the few-shot setting. Our code will be made available.

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here