Simple Questions Generate Named Entity Recognition Datasets

16 Dec 2021  ·  Hyunjae Kim, Jaehyo Yoo, Seunghyun Yoon, Jinhyuk Lee, Jaewoo Kang ·

Recent named entity recognition (NER) models often rely on human-annotated datasets, requiring the significant engagement of professional knowledge on the target domain and entities. This research introduces an ask-to-generate approach that automatically generates NER datasets by asking questions in simple natural language to an open-domain question answering system (e.g., "Which disease?"). Despite using fewer in-domain resources, our models, solely trained on the generated datasets, largely outperform strong low-resource models by an average F1 score of 19.4 for six popular NER benchmarks. Furthermore, our models provide competitive performance with rich-resource models that additionally leverage in-domain dictionaries provided by domain experts. In few-shot NER, we outperform the previous best model by an F1 score of 5.2 on three benchmarks and achieve new state-of-the-art performance.

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here