Simpler Context-Dependent Logical Forms via Model Projections

ACL 2016  ·  Reginald Long, Panupong Pasupat, Percy Liang ·

We consider the task of learning a context-dependent mapping from utterances to denotations. With only denotations at training time, we must search over a combinatorially large space of logical forms, which is even larger with context-dependent utterances. To cope with this challenge, we perform successive projections of the full model onto simpler models that operate over equivalence classes of logical forms. Though less expressive, we find that these simpler models are much faster and can be surprisingly effective. Moreover, they can be used to bootstrap the full model. Finally, we collected three new context-dependent semantic parsing datasets, and develop a new left-to-right parser.

PDF Abstract ACL 2016 PDF ACL 2016 Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here