Simpler PAC-Bayesian Bounds for Hostile Data

23 Oct 2016  ·  Pierre Alquier, Benjamin Guedj ·

PAC-Bayesian learning bounds are of the utmost interest to the learning community. Their role is to connect the generalization ability of an aggregation distribution $\rho$ to its empirical risk and to its Kullback-Leibler divergence with respect to some prior distribution $\pi$. Unfortunately, most of the available bounds typically rely on heavy assumptions such as boundedness and independence of the observations. This paper aims at relaxing these constraints and provides PAC-Bayesian learning bounds that hold for dependent, heavy-tailed observations (hereafter referred to as \emph{hostile data}). In these bounds the Kullack-Leibler divergence is replaced with a general version of Csisz\'ar's $f$-divergence. We prove a general PAC-Bayesian bound, and show how to use it in various hostile settings.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here