SimPO: Simultaneous Prediction and Optimization

31 Mar 2022  ·  Bing Zhang, Yuya Jeremy Ong, Taiga Nakamura ·

Many machine learning (ML) models are integrated within the context of a larger system as part of a key component for decision making processes. Concretely, predictive models are often employed in estimating the parameters for the input values that are utilized for optimization models as isolated processes. Traditionally, the predictive models are built first, then the model outputs are used to generate decision values separately. However, it is often the case that the prediction values that are trained independently of the optimization process produce sub-optimal solutions. In this paper, we propose a formulation for the Simultaneous Prediction and Optimization (SimPO) framework. This framework introduces the use of a joint weighted loss of a decision-driven predictive ML model and an optimization objective function, which is optimized end-to-end directly through gradient-based methods.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here