Crafting Customisable Characters with LLMs: Introducing SimsChat, a Persona-Driven Role-Playing Agent Framework

Large Language Models (LLMs) demonstrate a remarkable ability to comprehend human instructions and generate high-quality text. This capability allows LLMs to function as agents that can emulate human beings at a more sophisticated level, beyond the mere replication of basic human behaviours. However, there is a lack of exploring into leveraging LLMs to craft characters from diverse aspects. In this work, we introduce the Customisable Conversation Agent Framework, which leverages LLMs to simulate real-world characters that can be freely customised according to various user preferences. This adaptable framework is beneficial for the design of customisable characters and role-playing agents aligned with human preferences. We propose the SimsConv dataset, which encompasses 68 different customised characters, 1,360 multi-turn role-playing dialogues, and a total of 13,971 interaction dialogues. The characters are created from several real-world elements, such as career, aspiration, trait, and skill. Building upon these foundations, we present SimsChat, a freely customisable role-playing agent. It incorporates diverse real-world scenes and topic-specific character interaction dialogues, thereby simulating characters' life experiences in various scenarios and topic-specific interactions with specific emotions. Experimental results indicate that our proposed framework achieves desirable performance and provides a valuable guideline for the construction of more accurate human simulacra in the future. Our data and code are publicly available at https://github.com/Bernard-Yang/SimsChat.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here