Single Image Highlight Removal with a Sparse and Low-Rank Reflection Model

We propose a sparse and low-rank reflection model for specular highlight detection and removal using a single input image. This model is motivated by the observation that the specular highlight of a natural image usually has large intensity but is rather sparsely distributed while the remaining diffuse reflection can be well approximated by a linear combination of several distinct colors with a sparse and low-rank weighting matrix... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet