Single-Sample Face Recognition with Image Corruption and Misalignment via Sparse Illumination Transfer

Single-sample face recognition is one of the most challenging problems in face recognition. We propose a novel face recognition algorithm to address this problem based on a sparse representation based classification (SRC) framework. The new algorithm is robust to image misalignment and pixel corruption, and is able to reduce required training images to one sample per class. To compensate the missing illumination information typically provided by multiple training images, a sparse illumination transfer (SIT) technique is introduced. The SIT algorithms seek additional illumination examples of face images from one or more additional subject classes, and form an illumination dictionary. By enforcing a sparse representation of the query image, the method can recover and transfer the pose and illumination information from the alignment stage to the recognition stage. Our extensive experiments have demonstrated that the new algorithms significantly outperform the existing algorithms in the single-sample regime and with less restrictions. In particular, the face alignment accuracy is comparable to that of the well-known Deformable SRC algorithm using multiple training images; and the face recognition accuracy exceeds those of the SRC and Extended SRC algorithms using hand labeled alignment initialization.

PDF Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here