Single Underwater Image Restoration by Contrastive Learning

Underwater image restoration attracts significant attention due to its importance in unveiling the underwater world. This paper elaborates on a novel method that achieves state-of-the-art results for underwater image restoration based on the unsupervised image-to-image translation framework. We design our method by leveraging from contrastive learning and generative adversarial networks to maximize mutual information between raw and restored images. Additionally, we release a large-scale real underwater image dataset to support both paired and unpaired training modules. Extensive experiments with comparisons to recent approaches further demonstrate the superiority of our proposed method.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.