Sinkhorn Distributionally Robust Optimization
We study distributionally robust optimization with Sinkhorn distance -- a variant of Wasserstein distance based on entropic regularization. We derive a convex programming dual reformulation for general nominal distributions, transport costs, and loss functions. To solve the dual reformulation, we develop a stochastic mirror descent algorithm with biased subgradient estimators and derive its computational complexity guarantees. Finally, we provide numerical examples using synthetic and real data to demonstrate its superior performance.
PDF AbstractTasks
Results from the Paper
Submit
results from this paper
to get state-of-the-art GitHub badges and help the
community compare results to other papers.
Methods
No methods listed for this paper. Add
relevant methods here