Situational Grounding within Multimodal Simulations

5 Feb 2019  ·  James Pustejovsky, Nikhil Krishnaswamy ·

In this paper, we argue that simulation platforms enable a novel type of embodied spatial reasoning, one facilitated by a formal model of object and event semantics that renders the continuous quantitative search space of an open-world, real-time environment tractable. We provide examples for how a semantically-informed AI system can exploit the precise, numerical information provided by a game engine to perform qualitative reasoning about objects and events, facilitate learning novel concepts from data, and communicate with a human to improve its models and demonstrate its understanding. We argue that simulation environments, and game engines in particular, bring together many different notions of "simulation" and many different technologies to provide a highly-effective platform for developing both AI systems and tools to experiment in both machine and human intelligence.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here