Towards Automated Melanoma Detection with Deep Learning: Data Purification and Augmentation

16 Feb 2019  ·  Devansh Bisla, Anna Choromanska, Jennifer A. Stein, David Polsky, Russell Berman ·

Melanoma is one of the ten most common cancers in the US. Early detection is crucial for survival, but often the cancer is diagnosed in the fatal stage. Deep learning has the potential to improve cancer detection rates, but its applicability to melanoma detection is compromised by the limitations of the available skin lesion databases, which are small, heavily imbalanced, and contain images with occlusions. We build deep-learning-based tools for data purification and augmentation to counter-act these limitations. The developed tools can be utilized in a deep learning system for lesion classification and we show how to build such a system. The system heavily relies on the processing unit for removing image occlusions and the data generation unit, based on generative adversarial networks, for populating scarce lesion classes, or equivalently creating virtual patients with pre-defined types of lesions. We empirically verify our approach and show that incorporating these two units into melanoma detection system results in the superior performance over common baselines.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here