SkipNode: On Alleviating Performance Degradation for Deep Graph Convolutional Networks

22 Dec 2021  ·  Weigang Lu, Yibing Zhan, Binbin Lin, Ziyu Guan, Liu Liu, Baosheng Yu, Wei Zhao, Yaming Yang, DaCheng Tao ·

Graph Convolutional Networks (GCNs) suffer from performance degradation when models go deeper. However, earlier works only attributed the performance degeneration to over-smoothing. In this paper, we conduct theoretical and experimental analysis to explore the fundamental causes of performance degradation in deep GCNs: over-smoothing and gradient vanishing have a mutually reinforcing effect that causes the performance to deteriorate more quickly in deep GCNs. On the other hand, existing anti-over-smoothing methods all perform full convolutions up to the model depth. They could not well resist the exponential convergence of over-smoothing due to model depth increasing. In this work, we propose a simple yet effective plug-and-play module, Skipnode, to overcome the performance degradation of deep GCNs. It samples graph nodes in each convolutional layer to skip the convolution operation. In this way, both over-smoothing and gradient vanishing can be effectively suppressed since (1) not all nodes'features propagate through full layers and, (2) the gradient can be directly passed back through ``skipped'' nodes. We provide both theoretical analysis and empirical evaluation to demonstrate the efficacy of Skipnode and its superiority over SOTA baselines.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods