Slim-DP: A Light Communication Data Parallelism for DNN

27 Sep 2017 Shizhao Sun Wei Chen Jiang Bian Xiaoguang Liu Tie-Yan Liu

Data parallelism has emerged as a necessary technique to accelerate the training of deep neural networks (DNN). In a typical data parallelism approach, the local workers push the latest updates of all the parameters to the parameter server and pull all merged parameters back periodically... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet