Smart Bilingual Focused Crawling of Parallel Documents

23 May 2024  ·  Cristian García-Romero, Miquel Esplà-Gomis, Felipe Sánchez-Martínez ·

Crawling parallel texts $\unicode{x2014}$texts that are mutual translations$\unicode{x2014}$ from the Internet is usually done following a brute-force approach: documents are massively downloaded in an unguided process, and only a fraction of them end up leading to actual parallel content. In this work we propose a smart crawling method that guides the crawl towards finding parallel content more rapidly. Our approach builds on two different models: one that infers the language of a document from its URL, and another that infers whether a pair of URLs link to parallel documents. We evaluate both models in isolation and their integration into a crawling tool. The results demonstrate the individual effectiveness of both models and highlight that their combination enables the early discovery of parallel content during crawling, leading to a reduction in the amount of downloaded documents deemed useless, and yielding a greater quantity of parallel documents compared to conventional crawling approaches.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here