Smooth Adversarial Training

25 Jun 2020  ·  Cihang Xie, Mingxing Tan, Boqing Gong, Alan Yuille, Quoc V. Le ·

It is commonly believed that networks cannot be both accurate and robust, that gaining robustness means losing accuracy. It is also generally believed that, unless making networks larger, network architectural elements would otherwise matter little in improving adversarial robustness. Here we present evidence to challenge these common beliefs by a careful study about adversarial training. Our key observation is that the widely-used ReLU activation function significantly weakens adversarial training due to its non-smooth nature. Hence we propose smooth adversarial training (SAT), in which we replace ReLU with its smooth approximations to strengthen adversarial training. The purpose of smooth activation functions in SAT is to allow it to find harder adversarial examples and compute better gradient updates during adversarial training. Compared to standard adversarial training, SAT improves adversarial robustness for "free", i.e., no drop in accuracy and no increase in computational cost. For example, without introducing additional computations, SAT significantly enhances ResNet-50's robustness from 33.0% to 42.3%, while also improving accuracy by 0.9% on ImageNet. SAT also works well with larger networks: it helps EfficientNet-L1 to achieve 82.2% accuracy and 58.6% robustness on ImageNet, outperforming the previous state-of-the-art defense by 9.5% for accuracy and 11.6% for robustness. Models are available at https://github.com/cihangxie/SmoothAdversarialTraining.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper
Task Dataset Model Metric Name Metric Value Global Rank Result Benchmark
Adversarial Defense ImageNet (non-targeted PGD, max perturbation=4) SAT-EfficientNet-L1 Accuracy 58.6% # 1

Methods