Smoothed Functional Algorithms for Stochastic Optimization using q-Gaussian Distributions

21 Jun 2012  ·  Debarghya Ghoshdastidar, Ambedkar Dukkipati, Shalabh Bhatnagar ·

Smoothed functional (SF) schemes for gradient estimation are known to be efficient in stochastic optimization algorithms, specially when the objective is to improve the performance of a stochastic system. However, the performance of these methods depends on several parameters, such as the choice of a suitable smoothing kernel. Different kernels have been studied in literature, which include Gaussian, Cauchy and uniform distributions among others. This paper studies a new class of kernels based on the q-Gaussian distribution, that has gained popularity in statistical physics over the last decade. Though the importance of this family of distributions is attributed to its ability to generalize the Gaussian distribution, we observe that this class encompasses almost all existing smoothing kernels. This motivates us to study SF schemes for gradient estimation using the q-Gaussian distribution. Using the derived gradient estimates, we propose two-timescale algorithms for optimization of a stochastic objective function in a constrained setting with projected gradient search approach. We prove the convergence of our algorithms to the set of stationary points of an associated ODE. We also demonstrate their performance numerically through simulations on a queuing model.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here