Smoothed Low Rank and Sparse Matrix Recovery by Iteratively Reweighted Least Squares Minimization

29 Jan 2014  ·  Canyi Lu, Zhouchen Lin, Shuicheng Yan ·

This work presents a general framework for solving the low rank and/or sparse matrix minimization problems, which may involve multiple non-smooth terms. The Iteratively Reweighted Least Squares (IRLS) method is a fast solver, which smooths the objective function and minimizes it by alternately updating the variables and their weights. However, the traditional IRLS can only solve a sparse only or low rank only minimization problem with squared loss or an affine constraint. This work generalizes IRLS to solve joint/mixed low rank and sparse minimization problems, which are essential formulations for many tasks. As a concrete example, we solve the Schatten-$p$ norm and $\ell_{2,q}$-norm regularized Low-Rank Representation (LRR) problem by IRLS, and theoretically prove that the derived solution is a stationary point (globally optimal if $p,q\geq1$). Our convergence proof of IRLS is more general than previous one which depends on the special properties of the Schatten-$p$ norm and $\ell_{2,q}$-norm. Extensive experiments on both synthetic and real data sets demonstrate that our IRLS is much more efficient.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here