Soft then Hard: Rethinking the Quantization in Neural Image Compression

12 Apr 2021  ·  Zongyu Guo, Zhizheng Zhang, Runsen Feng, Zhibo Chen ·

Quantization is one of the core components in lossy image compression. For neural image compression, end-to-end optimization requires differentiable approximations of quantization, which can generally be grouped into three categories: additive uniform noise, straight-through estimator and soft-to-hard annealing. Training with additive uniform noise approximates the quantization error variationally but suffers from the train-test mismatch. The other two methods do not encounter this mismatch but, as shown in this paper, hurt the rate-distortion performance since the latent representation ability is weakened. We thus propose a novel soft-then-hard quantization strategy for neural image compression that first learns an expressive latent space softly, then closes the train-test mismatch with hard quantization. In addition, beyond the fixed integer quantization, we apply scaled additive uniform noise to adaptively control the quantization granularity by deriving a new variational upper bound on actual rate. Experiments demonstrate that our proposed methods are easy to adopt, stable to train, and highly effective especially on complex compression models.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here