Solid Harmonic Wavelet Scattering: Predicting Quantum Molecular Energy from Invariant Descriptors of 3D Electronic Densities

We introduce a solid harmonic wavelet scattering representation, invariant to rigid motion and stable to deformations, for regression and classification of 2D and 3D signals. Solid harmonic wavelets are computed by multiplying solid harmonic functions with Gaussian windows dilated at different scales. Invariant scattering coefficients are obtained by cascading such wavelet transforms with the complex modulus nonlinearity. We study an application of solid harmonic scattering invariants to the estimation of quantum molecular energies, which are also invariant to rigid motion and stable with respect to deformations. A multilinear regression over scattering invariants provides close to state of the art results over small and large databases of organic molecules.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here