Solving Almost all Systems of Random Quadratic Equations

29 May 2017 Gang Wang Georgios B. Giannakis Yousef Saad Jie Chen

This paper deals with finding an $n$-dimensional solution $x$ to a system of quadratic equations of the form $y_i=|\langle{a}_i,x\rangle|^2$ for $1\le i \le m$, which is also known as phase retrieval and is NP-hard in general. We put forth a novel procedure for minimizing the amplitude-based least-squares empirical loss, that starts with a weighted maximal correlation initialization obtainable with a few power or Lanczos iterations, followed by successive refinements based upon a sequence of iteratively reweighted (generalized) gradient iterations... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet