Solving Billion-Scale Knapsack Problems

2 Feb 2020 Xingwen Zhang Feng Qi Zhigang Hua Shuang Yang

Knapsack problems (KPs) are common in industry, but solving KPs is known to be NP-hard and has been tractable only at a relatively small scale. This paper examines KPs in a slightly generalized form and shows that they can be solved nearly optimally at scale via distributed algorithms... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet