Solving Large Imperfect Information Games Using CFR+

18 Jul 2014 Oskari Tammelin

Counterfactual Regret Minimization and variants (e.g. Public Chance Sampling CFR and Pure CFR) have been known as the best approaches for creating approximate Nash equilibrium solutions for imperfect information games such as poker. This paper introduces CFR$^+$, a new algorithm that typically outperforms the previously known algorithms by an order of magnitude or more in terms of computation time while also potentially requiring less memory...

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet