Solving Large-scale Systems of Random Quadratic Equations via Stochastic Truncated Amplitude Flow

29 Oct 2016  ·  Gang Wang, Georgios B. Giannakis, Jie Chen ·

A novel approach termed \emph{stochastic truncated amplitude flow} (STAF) is developed to reconstruct an unknown $n$-dimensional real-/complex-valued signal $\bm{x}$ from $m$ `phaseless' quadratic equations of the form $\psi_i=|\langle\bm{a}_i,\bm{x}\rangle|$. This problem, also known as phase retrieval from magnitude-only information, is \emph{NP-hard} in general. Adopting an amplitude-based nonconvex formulation, STAF leads to an iterative solver comprising two stages: s1) Orthogonality-promoting initialization through a stochastic variance reduced gradient algorithm; and, s2) A series of iterative refinements of the initialization using stochastic truncated gradient iterations. Both stages involve a single equation per iteration, thus rendering STAF a simple, scalable, and fast approach amenable to large-scale implementations that is useful when $n$ is large. When $\{\bm{a}_i\}_{i=1}^m$ are independent Gaussian, STAF provably recovers exactly any $\bm{x}\in\mathbb{R}^n$ exponentially fast based on order of $n$ quadratic equations. STAF is also robust in the presence of additive noise of bounded support. Simulated tests involving real Gaussian $\{\bm{a}_i\}$ vectors demonstrate that STAF empirically reconstructs any $\bm{x}\in\mathbb{R}^n$ exactly from about $2.3n$ magnitude-only measurements, outperforming state-of-the-art approaches and narrowing the gap from the information-theoretic number of equations $m=2n-1$. Extensive experiments using synthetic data and real images corroborate markedly improved performance of STAF over existing alternatives.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here