Solving Most Systems of Random Quadratic Equations

NeurIPS 2017 Gang WangGeorgios GiannakisYousef SaadJie Chen

This paper deals with finding an $n$-dimensional solution $\bm{x}$ to a system of quadratic equations $y_i=|\langle\bm{a}_i,\bm{x}\rangle|^2$, $1\le i \le m$, which in general is known to be NP-hard. We put forth a novel procedure, that starts with a \emph{weighted maximal correlation initialization} obtainable with a few power iterations, followed by successive refinements based on \emph{iteratively reweighted gradient-type iterations}... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet