Solving Non-smooth Constrained Programs with Lower Complexity than \mathcal{O}(1/\varepsilon): A Primal-Dual Homotopy Smoothing Approach

NeurIPS 2018  ·  Xiaohan Wei, Hao Yu, Qing Ling, Michael Neely ·

We propose a new primal-dual homotopy smoothing algorithm for a linearly constrained convex program, where neither the primal nor the dual function has to be smooth or strongly convex. The best known iteration complexity solving such a non-smooth problem is $\mathcal{O}(\varepsilon^{-1})$. In this paper, we show that by leveraging a local error bound condition on the dual function, the proposed algorithm can achieve a better primal convergence time of $\mathcal{O}\l(\varepsilon^{-2/(2+\beta)}\log_2(\varepsilon^{-1})\r)$, where $\beta\in(0,1]$ is a local error bound parameter. As an example application, we show that the distributed geometric median problem, which can be formulated as a constrained convex program, has its dual function non-smooth but satisfying the aforementioned local error bound condition with $\beta=1/2$, therefore enjoying a convergence time of $\mathcal{O}\l(\varepsilon^{-4/5}\log_2(\varepsilon^{-1})\r)$. This result improves upon the $\mathcal{O}(\varepsilon^{-1})$ convergence time bound achieved by existing distributed optimization algorithms. Simulation experiments also demonstrate the performance of our proposed algorithm.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here