Solving ODE with Universal Flows: Approximation Theory for Flow-Based Models

Normalizing flows are powerful invertible probabilistic models that can be used to translate two probability distributions, in a way that allows us to efficiently track the change of probability density. However, to trade for computational efficiency in sampling and in evaluating the log-density, special parameterization designs have been proposed at the cost of representational expressiveness. In this work, we propose to use ODEs as a framework to establish universal approximation theory for certain families of flow-based models.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here