Some Ethical Issues in the Review Process of Machine Learning Conferences

1 Jun 2021  ·  Alessio Russo ·

Recent successes in the Machine Learning community have led to a steep increase in the number of papers submitted to conferences. This increase made more prominent some of the issues that affect the current review process used by these conferences. The review process has several issues that may undermine the nature of scientific research, which is of being fully objective, apolitical, unbiased and free of misconduct (such as plagiarism, cheating, improper influence, and other improprieties). In this work, we study the problem of reviewers' recruitment, infringements of the double-blind process, fraudulent behaviors, biases in numerical ratings, and the appendix phenomenon (i.e., the fact that it is becoming more common to publish results in the appendix section of a paper). For each of these problems, we provide a short description and possible solutions. The goal of this work is to raise awareness in the Machine Learning community regarding these issues.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here