SoS Degree Reduction with Applications to Clustering and Robust Moment Estimation

5 Jan 2021  ·  David Steurer, Stefan Tiegel ·

We develop a general framework to significantly reduce the degree of sum-of-squares proofs by introducing new variables. To illustrate the power of this framework, we use it to speed up previous algorithms based on sum-of-squares for two important estimation problems, clustering and robust moment estimation. The resulting algorithms offer the same statistical guarantees as the previous best algorithms but have significantly faster running times. Roughly speaking, given a sample of $n$ points in dimension $d$, our algorithms can exploit order-$\ell$ moments in time $d^{O(\ell)}\cdot n^{O(1)}$, whereas a naive implementation requires time $(d\cdot n)^{O(\ell)}$. Since for the aforementioned applications, the typical sample size is $d^{\Theta(\ell)}$, our framework improves running times from $d^{O(\ell^2)}$ to $d^{O(\ell)}$.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here