Source-side Prediction for Neural Headline Generation

22 Dec 2017  ·  Shun Kiyono, Sho Takase, Jun Suzuki, Naoaki Okazaki, Kentaro Inui, Masaaki Nagata ·

The encoder-decoder model is widely used in natural language generation tasks. However, the model sometimes suffers from repeated redundant generation, misses important phrases, and includes irrelevant entities. Toward solving these problems we propose a novel source-side token prediction module. Our method jointly estimates the probability distributions over source and target vocabularies to capture a correspondence between source and target tokens. The experiments show that the proposed model outperforms the current state-of-the-art method in the headline generation task. Additionally, we show that our method has an ability to learn a reasonable token-wise correspondence without knowing any true alignments.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here