Span-Based LCFRS-2 Parsing

WS 2020  ·  Milo{\v{s}} Stanojevi{\'c}, Mark Steedman ·

The earliest models for discontinuous constituency parsers used mildly context-sensitive grammars, but the fashion has changed in recent years to grammar-less transition-based parsers that use strong neural probabilistic models to greedily predict transitions. We argue that grammar-based approaches still have something to contribute on top of what is offered by transition-based parsers. Concretely, by using a grammar formalism to restrict the space of possible trees we can use dynamic programming parsing algorithms for exact search for the most probable tree. Previous chart-based parsers for discontinuous formalisms used probabilistically weak generative models. We instead use a span-based discriminative neural model that preserves the dynamic programming properties of the chart parsers. Our parser does not use an explicit grammar, but it does use explicit grammar formalism constraints: we generate only trees that are within the LCFRS-2 formalism. These properties allow us to construct a new parsing algorithm that runs in lower worst-case time complexity of O(l n{\^{}}4 +n{\^{}}6), where $n$ is the sentence length and $l$ is the number of unique non-terminal labels. This parser is efficient in practice, provides best results among chart-based parsers, and is competitive with the best transition based parsers. We also show that the main bottleneck for further improvement in performance is in the restriction of fan-out to degree 2. We show that well-nestedness is helpful in speeding up parsing, but lowers accuracy.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here