Sparse Features for PCA-Like Linear Regression

Principal Components Analysis~(PCA) is often used as a feature extraction procedure. Given a matrix $X \in \mathbb{R}^{n \times d}$, whose rows represent $n$ data points with respect to $d$ features, the top $k$ right singular vectors of $X$ (the so-called \textit{eigenfeatures}), are arbitrary linear combinations of all available features... (read more)

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet