Sparse Gaussian Processes for Stochastic Differential Equations

We frame the problem of learning stochastic differential equations (SDEs) from noisy observations as an inference problem and aim to maximize the marginal likelihood of the observations in a joint model of the latent paths and the noisy observations. As this problem is intractable, we derive an approximate (variational) inference algorithm and propose a novel parameterization of the approximate distribution over paths using a sparse Markovian Gaussian process. The approximation is efficient in storage and computation, allowing the usage of well-established optimizing algorithms such as natural gradient descent. We demonstrate the capability of the proposed method on the Ornstein-Uhlenbeck process.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here