Sparse Learning for Large-scale and High-dimensional Data: A Randomized Convex-concave Optimization Approach

12 Nov 2015  ·  Lijun Zhang, Tianbao Yang, Rong Jin, Zhi-Hua Zhou ·

In this paper, we develop a randomized algorithm and theory for learning a sparse model from large-scale and high-dimensional data, which is usually formulated as an empirical risk minimization problem with a sparsity-inducing regularizer. Under the assumption that there exists a (approximately) sparse solution with high classification accuracy, we argue that the dual solution is also sparse or approximately sparse. The fact that both primal and dual solutions are sparse motivates us to develop a randomized approach for a general convex-concave optimization problem. Specifically, the proposed approach combines the strength of random projection with that of sparse learning: it utilizes random projection to reduce the dimensionality, and introduces $\ell_1$-norm regularization to alleviate the approximation error caused by random projection. Theoretical analysis shows that under favored conditions, the randomized algorithm can accurately recover the optimal solutions to the convex-concave optimization problem (i.e., recover both the primal and dual solutions).

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here