Sparse multiresolution representations with adaptive kernels

Reproducing kernel Hilbert spaces (RKHSs) are key elements of many non-parametric tools successfully used in signal processing, statistics, and machine learning. In this work, we aim to address three issues of the classical RKHS based techniques... (read more)

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet